

Question Paper Code: 57490

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Fifth Semester

Information Technology

IT 6502 - DIGITAL SIGNAL PROCESSING

(Regulations 2013)

Time: Three Hours Maximum: 100 Marks

Answer ALL questions. $PART - A (10 \times 2 = 20 \text{ Marks})$

- 1. What is a continuous and discrete time signal?
- 2. What are time invariant systems?
- 3. Compute the DFT of the sequence $x(n) = \{1, 1, 1, 1\}$.
- 4. Perform circular convolution of two sequence $x(n) = \{1, 2, 3\}$ and $h(n) = \{4, 5, 6\}$.
- 5. Discuss the need for prewarping.
- 6. What are the properties of Chebyshev filter?
- 7. What are the properties of FIR filter?
- 8. What are the desirable characteristics of the windows?
- 9. What are the three-quantization errors to finite word length registers in digital filters?
- 10. What is meant by "dead band" of the filter?

$PART - B (5 \times 16 = 80 Marks)$

- 11. (a) (i) Determine the power and energy of the signal $x(n) = \left(\frac{1}{3}\right)^n u(n)$. (8)
 - (ii) Determine whether the system described by the input-output relation is linear or non-linear y(n) = nx(n). (8)

OR

- (b) Determine the z transform and ROC of the signal: (16)
 - (i) $x(n) = (a)^n u(n)$
 - (ii) $x(n) = \cos n\theta u(n)$
- 12. (a) Compute the DFT for the sequence {1, 1, 1, 1, 1, 1, 1, 0}. Using radix-2 DIT-FFT algorithm. (16)

OR

of two sequences un) = (1, 2, 3) and h(n) = (4, 5, 6).

- (b) In a LTI system the input x(n) = {3, -1, 0, 1, 3, 2, 0, 1, 2, 1} and the impulse response h(n) = {1, 1, 1}. Find the output y(n) of the system using overlap save method.
 (16)
- (a) Using Bilinear transformation design a high pass filter monotonic in the passband with a cutoff frequency of 1000 Hz and down 10 dB at 350 Hz. The sampling frequency is 5000 Hz.

OR

(b) Design a digital Chebyshev filter with the following specifications, using IIM $0.8 \le \left| \text{ H}(e^{j\omega}) \right| \le 1, \, 0 \le \omega \le 0.2 \, \pi$

$$\left| H(e^{j\omega}) \right| \le 0.2, 0.6\pi \le \omega \le \pi$$
 (16)

57490

14. (a) Design a HPF with the following frequency response:

$$H_d(e^{j\omega}) = 1$$
 for $\pi/4 \le \omega \pi$

$$= 0$$
 for $|\omega| \le \pi/4$

of length N = 11 using Hanning window.

(16)

OR

- (b) Using frequency sampling method design a bandpass filter with the following specifications; sampling frequency 8 kHz, lower cutoff frequency 1000 Hz and upper cut off frequency 3000 Hz.
 (16)
- 15. (a) Two first order filters are connected in cascaded whose system functions of the individual sections are H1 (z) = 1 / (1 0.5 z⁻¹) and H2 (z) = 1/(1 0.4 z⁻¹).
 Determine the overall output noise power. (16)

OR

(b) Derive the steady state input and output noise power of an analog to digital converter used in a digital signal processing system. (16)